D ec 1 99 8 REFINING THE ABEL – JACOBI MAPS

نویسنده

  • M. ROVINSKY
چکیده

Given a smooth projective variety X over a field k of characteristic zero, we consider the composition of the de Rham cohomology cycle class map over k from the Chow group CH q (X × k K), where K is the field of fractions of henselization A h of the local ring of a smooth closed point of a variety over the field k with an appropriate projection:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abel-jacobi Mappings and Finiteness of Motivic Cohomology Groups

1. Notation and generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2. Varieties over local fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3. Varieties over p-adic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4. Number field ca...

متن کامل

Abel-jacobi Maps Associated to Smooth Cubic Threefolds

In this article we consider the spaces H(X) parametrizing curves of degree d and genus g on a smooth cubic threefold X ⊂ P, with regard in particular to the Abel-Jacobi map ud : H(X) → J(X) to the intermediate Jacobian J(X) of X . Our principle result is that for all d ≤ 5 the map ud coincides with the maximal rationally connected fibration of H(X).

متن کامل

Arithmetic Hodge Structure and Higher Abel-jacobi Maps

In this paper, we show some applications to algebraic cycles by using higher Abel-Jacobi maps which were defined in [the author: Motives and algebraic de Rham cohomology]. In particular, we prove that the Beilinson conjecture on algebraic cycles over number fields implies the Bloch conjecture on zero-cycles on surfaces. Moreover, we construct a zero-cycle on a product of curves whose Mumford in...

متن کامل

Motives and Algebraic De Rham Cohomology

In this paper, we define a certain Hodge-theoretic structure for an arbitrary variety X over the complex number field by using the theory of mixed Hodge module due to Morihiko Saito. We call it an arithmetic Hodge structure of X. It is shown that extension groups of arithmetic Hodge structure do not vanish even for degree ≥ 2. Moreover, we define higher Abel-Jacobi maps from Bloch’s higher Chow...

متن کامل

ar X iv : m at h / 99 06 16 5 v 1 [ m at h . A G ] 2 4 Ju n 19 99 Albanese and Picard 1 - motives

LetX be an n-dimensional algebraic variety over a field of characteristic zero. We describe algebraically defined Deligne 1-motives Alb(X), Alb−(X), Pic(X) and Pic−(X) which generalize the classical Albanese and Picard varieties of a smooth projective variety. We compute Hodge, l-adic and De Rham realizations proving Deligne’s conjecture for H, H2n−1, H 1 and H1. We investigate functoriality, u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998